Estimating the Carbon Footprint of Cyberattacks: *The Ransomware Case*

Fehmi Jaafar (fehmi.jaafar@uqac.ca), **Jean Decian** (jean.decian1@uqac.ca) Department of Computer Science and Mathematics University of Quebec at Chicoutimi

Introduction	Proposed Approach: CyberAttack Carbon Footprint (CACF)	Discussion
Rise in Cybersecurity Threats		Cybercrime are underreported
 More than double since 2020 	CACF = C * U	5% to 10% of cybercrime are reported
Impact	Where:	
 Mainly Financial and Operational 	 C: Sums of all emissions per unit 	430 <i>MtCO</i> ₂ <i>eq</i>

Environmental largely unknown

• **U**: Number of units

C = O + M + T

Where:

- **O (Operational Emissions)**: Emissions during the running of the software
- M (Embodied Emissions): Emissions from the hardware production and utilization

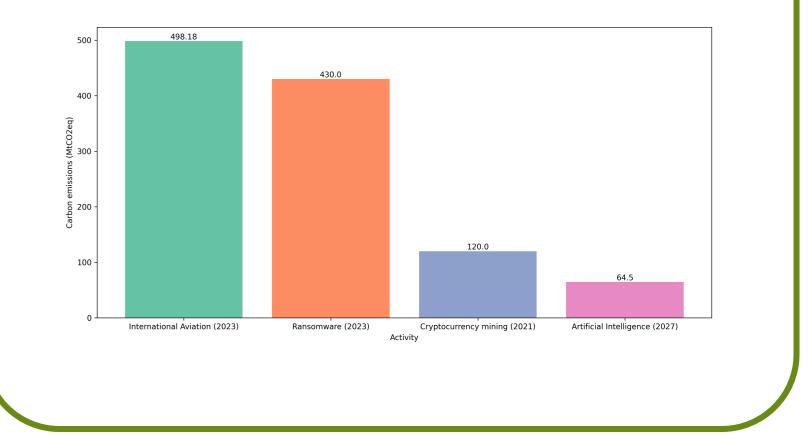
T (Transfer Emissions): Emissions during data transfer

$$CACF = (O + M + T) * U$$

O = P * TiR * I

Where:

- P: Total Power consumed by the hardware
- **TiR**: Time Reserved by the software
- I: Carbon Intensity


 $M = TE * \frac{TiR}{EL} * \frac{RR}{ToR}$

Where:

- **TE**: Total Embodied Emissions
- **TiR**: Time Reserved by the software
- EL: Expected Lifespan
- **RR**: Resources reserved by the software on the hardware
- **ToR**: Total resources on the hardware

Rank	Country	Total 2023 GHG Emissions (<i>MtCO</i> ₂ eq)
2	United States	5960.80
7	Japan	1041.01
10	Canada	747.68
12	Germany	681.81
	Ransomware	430
20	France and Monaco	385.52
22	United Kingdom	379.32
23	Italy, San Marino and the Holy See	374.12

Activities	Total GHG Emissions (<i>MtCO</i> 2eq)
International Aviation (2023)	498.18
Ransomware (2023)	430
Cryptocurreny mining (2021)	120
Artificial Intelligence (2017)	64.5

Research Goals

- How can the carbon footprint of cyberattacks be quantified?
- What is the carbon footprint of ransomware attacks?
- How does the carbon footprint of ransomware compare with other energy-consuming activities?

Background

Carbon Footprint

Total amount of greenhouse gas emissions produced, both directly and indirectly

Ransomware

Malware that encrypts a target's data to demand a ransom in exchange for releasing the data

317.6 *million* = 5.24%

Lifecycle of a Ransomware

• Initial access

- Consolidation and preparation
- Impact on target

$T = B * I * E_T * N$

Where:

- **B**: Bytes transferred
- I: Carbon Intensity
- E_T : Energy to transfer one byte
- N: Number of directions in which data are transferred

Estimated Carbon Emissions per Ransomware

Embodied Emissions (M)

- $TE = 3.93 * 10^5 gCO_2 eq$
- EL = 35064 h
- RR = ToR = 1

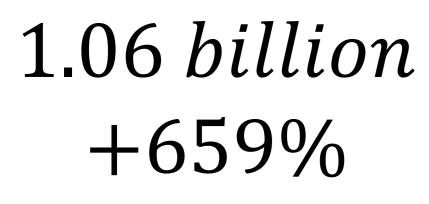
 $M = 76 \ gCO_2 eq$

Operational Emissions (O)

- TiR = 6.8 h
- $P_0 = 50 * 10^{-3} \, kW$
- $I = 481 gCO_2 eq/kwh$

Conclusion

- Illustrates the substantial environmental impact of ransomware activities
- Proposed a formula for estimating the carbon footprint of cyberattacks
- Ransomware activities surpasses Cryptocurrency mining and Artificial Intelligence


References

Ransomware Core Actions

- L: Lock
- **E**: Encrypt
- **D**: Delete
- **S**: Steal

Cryptojacking

When an attacker hijacks the computer resources of a victim to generate cryptocurrencies


```
O = 200 \ gCO_2 eq
```

Transfer Emissions (T)

• $B = 518 * 10^9 bytes$ • $I = 481 gCO_2 eq/kwh$ • $E_T = 2.91 * 10^{-10} kwh/byte$ • N = 2

 $T = 145 kgCO_2 eq$

Carbon Emissions for Ransomware Activities

 $C = 145 kgCO_2 eq/ransomware$

317.6 million ransomware attacks recorded by one service provider
70% of ransomware attacks result in data encryption

$$CACF_{Ransomware} = 32 MtCO_2 eq$$

Introduction
 Natalucci, Qureshi & Suntheim, 2024
Background
 CERT NZ, n.d. ENISA, 2022 SonicWall Inc, 2024
Proposed Approach: CyberAttack Carbon Footprint (CACF)
 Green Software Foundation, n.d.
Results: The Ransomware Case
 ENISA, 2022 European Commission Joint Research Center, 2024 Marsh, 2024 Our World in Data, 2024 SonicWall Inc, 2024 Sophos, 2024 Splunk SURGe, 2022 The Shift Project, 2019
Discussion
 European Commission Joint Research Center, 2024 Hebous & Vernon-Lin, 2023 Office of the Auditor General of Canada Government of Canada, 2024 Vries, 2023